
24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

Intel Celeron™ Processor
Specification Update

Release Date: April 15, 1998

Order Number: 243748-001

The Intel Celeron™ processor may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are documented in this Specification Update.

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products,
Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products
including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them.

The Intel Celeron™ processor may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

The Specification Update should be publicly available following the last shipment date for a period of time equal to the specific product’s
warranty period. Hardcopy Specification Updates will be available for one (1) year following End of Life (EOL). Web access will be
available for three (3) years following EOL.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained by
calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com

Copyright © Intel Corporation 1998.

* Third-party brands and names are the property of their respective owners.

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

CONTENTS

REVISION HISTORY.. v
PREFACE.. vi

Specification Update for Intel Celeron™ Processor
GENERAL INFORMATION.. 3
ERRATA .. 8
DOCUMENTATION CHANGES... 24
SPECIFICATION CLARIFICATIONS... 27

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

v

REVISION HISTORY

Date of Revision Version Description

April 15, 1998 -001 This document is the first Specification Update for
the Celeron™ processor.

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

vi

PREFACE
This document is an update to the specifications contained the Intel Celeron™
Processor at 266 MHz datasheet (Order Number 243658), and the Intel Architecture
Software Developer’s Manual, Volumes 1, 2 and 3 (Order Numbers 243190, 243191,
and 243192, respectively). It is intended for hardware system manufacturers and
software developers of applications, operating systems, or tools. It contains
Specification Changes, S-Specs, Errata, Specification Clarifications, and
Documentation Changes.

Nomenclature
Specification Changes are modifications to the current published specifications for the
Intel Celeron™ processor. These changes will be incorporated in the next release of the
specifications.
S-Specs are exceptions to the published specifications, and apply only to the units
assembled under that s-spec.
Specification Clarifications describe a specification in greater detail or further
highlight a specification’s impact to a complex design situation. These clarifications
will be incorporated in the next release of the specifications.
Documentation Changes include typos, errors, or omissions from the current
published specifications. These changes will be incorporated in the next release of the
specifications.
Errata are design defects or errors. Errata may cause the Intel Celeron processor’s
behavior to deviate from published specifications. Hardware and software designed to
be used with any given processor stepping must assume that all errata documented for
that processor stepping are present on all devices.

Identification Information
Complete identification information of the Intel Celeron processor can be found in the
Intel Processor Identification and the CPU Instruction application note (Order Number
241618).

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

Specification Update for
Intel Celeron™ Processor

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

3

GENERAL INFORMATION

Intel Celeron™ Processor Markings

®

i m
 ©

’98

celeron ™

Static White Silkscreen marks

 2
66

/6
6

 C
O

A
F

F
F

F
F

F
F

F
 S

Y
Y

Y
Y

Dynamic laser mark area

NOTES:
• SYYYY = S-spec Number.

• FFFFFFFF = FPO # (Test Lot Traceability #).

• COA = Country of Assembly.

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

4

Intel Celeron™ Processor Identification Information
CPUID

Type Family Model Stepping
Core

Stepping S-Spec
Speed (MHz)

Core/Bus
S.E.C.

Substrate Notes

0 6 5 0 dA0 SL2SY 266/66 Rev. 1

0 6 5 1 dA1 SL2TR 266/66 Rev. 1

0 6 5 1 dA1 SL2QG 266/66 Rev. 1 1
NOTE:
1. This is a boxed Intel Celeron™ processor with an attached fan heatsink.

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

5

Summary Table of Changes

The following table indicates the Specification Changes, Errata, Specification
Clarifications, or Documentation Changes which apply to the Intel Celeron processors.
Intel intends to fix some of the errata in a future stepping of the component, and to
account for the other outstanding issues through documentation or specification changes
as noted. This table uses the following notations:

CODES USED IN SUMMARY TABLE

X: Specification Change, Erratum, Specification Clarification,
or Documentation Change applies to the given processor
stepping.

Doc: Intel intends to update the appropriate documentation in a
future revision.

Fix: This erratum is intended to be fixed in a future stepping of
the component.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

(No mark) or (blank box): This item is fixed in or does not apply to the given stepping.

AP: APIC related erratum.

SUB: This column refers to errata on the Intel Celeron™ processor
substrate.

Shaded: This erratum is either new or modified from the previous
version of the document.

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

6

NO. dA0 dA1 SUB Plans ERRATA

1 X X NoFix FP Data Operand Pointer may be incorrectly calculated
after FP access which wraps 64-Kbyte boundary in
16-bit code

2 X X NoFix Differences exist in debug exception reporting

3 X X NoFix Code fetch matching disabled debug register may cause
debug exception

4 X X NoFix FP inexact-result exception flag may not be set

5 X X NoFix BTM for SMI will contain incorrect FROM EIP

6 X X NoFix I/O restart in SMM may fail after simultaneous MCE

7 X X NoFix Branch traps do not function if BTMs are also enabled

8 X X NoFix Machine check exception handler may not always
execute successfully

9 X X NoFix LBER may be corrupted after some events

10 X X NoFix BTMs may be corrupted during simultaneous L1 cache
line replacement

11 X X Fix Potential early deassertion of LOCK# during split-lock
cycles

12 X X NoFix A20M# may be inverted after returning from SMM and
Reset

13 X X Fix Reporting of floating-point exception may be delayed

14 X X NoFix Near CALL to ESP creates unexpected EIP address

15 X X Fix Built-in self-test always gives nonzero result

16 X X Fix THERMTRIP# may not be asserted as specified

17 X Fix Cache state corruption in the presence of page A/D-bit
setting and snoop traffic

18 X Fix Snoop cycle generates spurious machine check
exception

19 X X Fix MOVD/MOVQ instruction writes to memory
prematurely

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

7

NO. dA0 dA1 SUB Plans ERRATA

20 X X NoFix Memory type undefined for nonmemory operations

21 X X NoFix Bus protocol conflict with optimized chipsets

22 X X NoFix FP Data Operand Pointer may not be zero after power
on or Reset

23 X X NoFix MOVD following zeroing instruction can cause
incorrect result

1AP X X NoFix APIC access to cacheable memory causes
SHUTDOWN

2AP X X NoFix Write to mask LVT (programmed as EXTINT) will not
deassert outstanding interrupt

NO. dA0 dA1 SUB Plans DOCUMENTATION CHANGES

1 X X Doc Invalid arithmetic operations and masked responses to
them relative to FIST/FISTP instruction

2 X X Doc FIDIV/FIDIVR m16int description

3 X X Doc PUSH does not pad with zeros

4 X X Doc DR7, bit 10 is reserved

5 X X Doc Cache and TLB description correction

6 X X Doc SMRAM state save map contains documentation error

NO. dA0 dA1 SUB Plans SPECIFICATION CLARIFICATIONS

1 X X Doc Writes to WC memory

2 X X Doc Multiple processors protocol and restrictions

3 X X Doc Critical sequence of events during a page fault
exception

4 X X Doc Performance-monitoring counter issues

5 X X Doc POP[ESP] with 16-bit stack size

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

8

ERRATA

1. FP Data Operand Pointer May Be Incorrectly Calculated After FP Access
Which Wraps 64-Kbyte Boundary in 16-Bit Code

PROBLEM : The FP Data Operand Pointer is the effective address of the operand
associated with the last noncontrol floating-point instruction executed by the machine.
If an 80-bit floating-point access (load or store) occurs in a 16-bit mode other than
protected mode (in which case the access will produce a segment limit violation), the
memory access wraps a 64-Kbyte boundary, and the floating-point environment is
subsequently saved in 32-bit mode, the subtraction routine used to calculate the FP Data
Operand Pointer will assume the floating-point access was in 32-bit mode, and the high
word of the address will be FFFFh instead of 0000h.
IMPLICATION : A 32-bit operating system running 16-bit floating-point code may
encounter this erratum, under the following conditions:

• The operating system is using a segment greater than 64 Kbytes in size.

• An application is running in a 16-bit mode other than protected mode.

• An 80-bit floating-point load which wraps the 64-Kbyte boundary is executed.

• The operating system uses a 32-bit handler on an unmasked exception which occurs
during the load.

• The exception handler uses the value contained in the FP Data Operand Pointer.
Wrapping an 80-bit floating-point load around a segment boundary in this way is not a
normal programming practice. Intel has not currently identified any software which
exhibits this behavior.
WORKAROUND : If the FP Data Operand Pointer is used in a 32-bit exception handler in an
OS which may run 16-bit floating-point code, care must be taken to ensure that no
80-bit floating-point accesses are wrapped around a 64-Kbyte boundary.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

2. Differences Exist in Debug Exception Reporting

PROBLEM : There exist some differences in the reporting of code and data breakpoint
matches between that specified by previous Intel processors’ specifications and the
behavior of the Intel Celeron processor, as described below:

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

9

CASE 1:
The first case is for a breakpoint set on a MOVSS or POPSS instruction, when the
instruction following it causes a debug register protection fault (DR7.gd is already set,
enabling the fault). The Pentium® processor reports delayed data breakpoint matches
from the MOVSS or POPSS instructions by setting the matching DR6.bi bits, along
with the debug register protection fault (DR6.bd). If additional breakpoint faults are
matched during the call of the debug fault handler, the Pentium processor sets the
breakpoint match bits (DR6.bi) to reflect the breakpoints matched by both the MOVSS
or POPSS breakpoint and the debug fault handler call. The Intel Celeron processor only
sets DR6.bd in either situation, and does not set any of the DR6.bi bits.

CASE 2:
In the second breakpoint reporting failure case, if a MOVSS or POPSS instruction with
a data breakpoint is followed by a store to memory which crosses a 4-Kbyte page
boundary, the breakpoint information for the MOVSS or POPSS will be lost. Previous
processors retain this information across such a page split.

CASE 3:
If they occur after a MOVSS or POPSS instruction, the INT n, INTO, and INT3
instructions zero the DR6.Bi bits (bits B0 through B3), clearing pending breakpoint
information, unlike previous processors.

CASE 4:
If a data breakpoint and an SMI (System Management Interrupt) occur simultaneously,
the SMI will be serviced via a call to the SMM handler, and the pending breakpoint will
be lost.
IMPLICATION : When debugging or when developing debuggers for a Intel Celeron
processor-based system, this behavior should be noted. Normal usage of the MOVSS or
POPSS instructions (i.e., following them with a MOV ESP) will not exhibit the
behavior of cases 1-3. Debugging in conjunction with SMM will be limited by case 4
(no workaround has been identified for this case).
WORKAROUND : Following MOVSS and POPSS instructions with a MOV ESP instruction
when using breakpoints will avoid the first three cases of this erratum.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

10

3. Code Fetch Matching Disabled Debug Register May Cause Debug Exception

PROBLEM : The bits L0-3 and G0-3 enable breakpoints local to a task and global to all
tasks, respectively. If one of these bits is set, a breakpoint is enabled, corresponding to
the addresses in the debug registers DR0-DR3. If at least one of these breakpoints is
enabled, any of these registers are disabled (i.e., Ln and Gn are 0), and RWn for the
disabled register is 00 (indicating a breakpoint on instruction execution), normally an
instruction fetch will not cause an instruction-breakpoint fault based on a match with
the address in the disabled register (s). However, if the address in a disabled register
matches the address of a code fetch which also results in a page fault, an instruction-
breakpoint fault will occur.
IMPLICATION : While debugging software, extraneous instruction-breakpoint faults may be
encountered if breakpoint registers are not cleared when they are disabled. Debug
software which does not implement a code breakpoint handler will fail, if this occurs. If
a handler is present, the fault will be serviced. Mixing data and code may exacerbate
this problem by allowing disabled data breakpoint registers to break on an instruction
fetch.
WORKAROUND : The debug handler should clear breakpoint registers before they become
disabled.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

4. FP Inexact-Result Exception Flag May Not Be Set

PROBLEM : When the result of a floating-point operation is not exactly representable in
the destination format (1/3 in binary form, for example), an inexact-result (precision)
exception occurs. When this occurs, the PE bit (bit 5 of the FPU status word) is
normally set by the processor. Under certain rare conditions, this bit may not be set
when this rounding occurs. However, other actions taken by the processor (invoking the
software exception handler if the exception is unmasked) are not affected. This erratum
can only occur if the floating-point operation which causes the precision exception is
immediately followed by one of the following instructions:
• FST m32real

• FST m64real

• FSTP m32real

• FSTP m64real

• FSTP m80real

• FIST m16int

• FIST m32int

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

11

• FISTP m16int

• FISTP m32int

• FISTP m64int

Note that even if this combination of instructions is encountered, there is also a
dependency on the internal pipelining and execution state of both instructions in the
processor.
IMPLICATION : Inexact-result exceptions are commonly masked or ignored by applications,
as it happens frequently, and produces a rounded result acceptable to most applications.
The PE bit of the FPU status word may not always be set upon receiving an inexact-
result exception. Thus, if these exceptions are unmasked, a floating-point error
exception handler may not recognize that a precision exception occurred. Note that this
is a “sticky” bit, i.e., once set by an inexact-result condition, it remains set until cleared
by software.
WORKAROUND : This condition can be avoided by inserting a NOP instruction between the
two floating-point instructions.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

5. BTM for SMI Will Contain Incorrect FROM EIP

PROBLEM : A system management interrupt (SMI) will produce a Branch Trace Message
(BTM), if BTMs are enabled. However, the FROM EIP field of the BTM (used to
determine the address of the instruction which was being executed when the SMI was
serviced) will not have been updated for the SMI, so the field will report the same
FROM EIP as the previous BTM.
IMPLICATION : A BTM which is issued for an SMI will not contain the correct FROM EIP,
limiting the usefulness of BTMs for debugging software in conjunction with System
Management Mode (SMM).
WORKAROUND : None identified at this time.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

6. I/O Restart in SMM May Fail After Simultaneous MCE

PROBLEM : If an I/O instruction (IN, INS, REP INS, OUT, OUTS, or REP OUTS) is
being executed, and if the data for this instruction becomes corrupted, the Intel Celeron
processor will signal a machine check exception (MCE). If the instruction is directed at
a device which is powered down, the processor may also receive an assertion of SMI#.
Since MCEs have higher priority, the processor will call the MCE handler, and the

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

12

SMI# assertion will remain pending. However, upon attempting to execute the first
instruction of the MCE handler, the SMI# will be recognized and the processor will
attempt to execute the SMM handler. If the SMM handler is completed successfully, it
will attempt to restart the I/O instruction, but will not have the correct machine state,
due to the call to the MCE handler.
IMPLICATION : A simultaneous MCE and SMI# assertion may occur for one of the I/O
instructions above. The SMM handler may attempt to restart such an I/O instruction,
but will have corrupted state due to the MCE handler call, leading to failure of the
restart and SHUTDOWN of the processor.
WORKAROUND : If a system implementation must support both SMM and MCEs, the first
thing the SMM handler code (when an I/O restart is to be performed) should do is
check for a pending MCE. If there is an MCE pending, the SMM handler should
immediately exit via an RSM instruction and allow the machine check exception
handler to execute. If there is not, the SMM handler may proceed with its normal
operation.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

7. Branch Traps Do Not Function If BTMs Are Also Enabled

PROBLEM : If branch traps or branch trace messages (BTMs) are enabled alone, both
function as expected. However, if both are enabled, only the BTMs will function, and
the branch traps will be ignored.
IMPLICATION : The branch traps and branch trace message debugging features cannot be
used together.
WORKAROUND : If branch trap functionality is desired, BTMs must be disabled.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

8. Machine Check Exception Handler May Not Always Execute Successfully

PROBLEM : An asynchronous machine check exception (MCE), such as a BINIT# event,
which occurs during an access that splits a 4-Kbyte page boundary may leave some
internal registers in an indeterminate state. Thus, MCE handler code may not always
run successfully if an asynchronous MCE has occurred previously.
IMPLICATION : An MCE may not always result in the successful execution of the MCE
handler. However, asynchronous MCEs usually occur upon detection of a catastrophic
system condition that would also hang the processor. Leaving MCEs disabled will
result in the condition which caused the asynchronous MCE instead causing the

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

13

processor to enter SHUTDOWN. Therefore, leaving MCEs disabled may not improve
overall system behavior.
WORKAROUND : No workaround which would guarantee successful MCE handler
execution under this condition has been identified.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

9. LBER May Be Corrupted After Some Events

PROBLEM : The last branch record (LBR) and the last branch before exception record
(LBER) can be used to determine the source and destination information for previous
branches or exceptions. The LBR contains the source and destination addresses for the
last branch or exception, and the LBER contains similar information for the last branch
taken before the last exception. This information is typically used to determine the
location of a branch which leads to execution of code which causes an exception.
However, after a catastrophic bus condition which results in an assertion of BINIT# and
the reinitialization of the buses, the value in the LBER may be corrupted. Also, after
either a CALL which results in a fault or a software interrupt, the LBER and LBR will
be updated to the same value, when the LBER should not have been updated.
IMPLICATION : The LBER and LBR registers are used only for debugging purposes. When
this erratum occurs, the LBER will not contain reliable address information. The value
of LBER should be used with caution when debugging branching code; if the values in
the LBR and LBER are the same, then the LBER value is incorrect. Also, the value in
the LBER should not be relied upon after a BINIT# event.
WORKAROUND : None identified at this time.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

10. BTMs May Be Corrupted During Simultaneous L1 Cache Line Replacement

PROBLEM : When Branch Trace Messages (BTMs) are enabled and such a message is
generated, the BTM may be corrupted when issued to the bus by the L1 cache if a new
line of data is brought into the L1 data cache simultaneously. Though the new line
being stored in the L1 cache is stored correctly, and no corruption occurs in the data,
the information in the BTM may be incorrect due to the internal collision of the data
line and the BTM.
IMPLICATION : Although BTMs may not be entirely reliable due to this erratum, the
conditions necessary for this boundary condition to occur have only been exhibited

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

14

during focused simulation testing. Intel has currently not observed this erratum in a
system level validation environment.
WORKAROUND : None identified at this time.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

11. Potential Early Deassertion of LOCK# during Split-Lock Cycles

PROBLEM : During a split-lock cycle there are four bus transactions: 1st ADS# (a partial
read), 2nd ADS# (a partial read), 3rd ADS# (a partial write), and the 4th ADS# (a
partial write). Due to this erratum, LOCK# may deassert one clock after the 4th ADS#
of the split-lock cycle instead of after the RS# assertion corresponding to the 4th ADS#
has been sampled. The following sequence of events are required for this erratum to
occur:

1. A lock cycle occurs (split or nonsplit).
2. Five more bus transactions (assertion of ADS#) occur.
3. A split-lock cycle occurs and BNR# toggles after the 3rd ADS# (partial write) of the

split-lock cycle. This in turn delays the assertion of the 4th ADS# of the split-lock
cycle. BNR# toggling at this time could most likely happen when the bus is set for
an IOQ depth of 2.

When all of these events occur, LOCK# will be deasserted in the next clock after the
4th ADS# of the split-lock cycle.
IMPLICATION : This may affect chipset logic which monitors the behavior of LOCK#
deassertion.
WORKAROUND : None identified.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

12. A20M# May Be Inverted After Returning From SMM and Reset

PROBLEM : This erratum is seen when software causes the following events to occur:

1. The assertion of A20M# in real address mode.

2. After entering the 1-Mbyte address wrap-around mode caused by the assertion of
A20M#, there is an assertion of SMI# intended to cause a Reset or remove power to
the processor. Once in the SMM handler, software saves the SMM state save map to
an area of nonvolatile memory from which it can be restored at some point in the
future. Then software asserts RESET# or removes power to the processor.

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

15

3. After exiting Reset or completion of power-on, software asserts SMI# again. Once in
the SMM handler, it then retrieves the old SMM state save map which was saved in
event 2 above and copies it into the current SMM state save map. Software then
asserts A20M# and executes the RSM instruction. After exiting the SMM handler,
the polarity of A20M# is inverted.

IMPLICATION : If this erratum occurs, A20M# will behave with a polarity opposite from
what is expected (i.e., the 1-Mbyte address wrap-around mode is enabled when A20M#
is deasserted, and does not occur when A20M# is asserted).
WORKAROUND : Software should save the A20M# signal state in nonvolatile memory
before an assertion of RESET# or a power down condition. After coming out of Reset
or at power on, SMI# should be asserted again. During the restoration of the old SMM
state save map described in event 3 above, the entire map should be restored, except for
bit 5 of the byte at offset 7F18h. This bit should retain the value assigned to it when the
SMM state save map was created in event 3. The SMM handler should then restore the
original value of the A20M# signal.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

13. Reporting of Floating-Point Exception May be Delayed

PROBLEM : The Intel Celeron processor normally reports a floating-point exception for an
instruction when the next floating-point or MMX™ technology instruction is executed.
The assertion of FERR# and/or the INT 16 interrupt corresponding to the exception
may be delayed until the floating-point or MMX technology instruction after the one
which is expected to trigger the exception, if the following conditions are met:

1. A floating-point instruction causes an exception.

2. Before another floating-point or MMX™ technology instruction, any one of the
following occurs:

a. A subsequent data access occurs to a page which has not been marked as
accessed, or

b. Data is referenced which crosses a page boundary, or

c. A possible page-fault condition is detected which, when resolved, completes
without faulting.

3. The instruction causing event 2 above is followed by a MOVQ or MOVD store
instruction.

IMPLICATION : This erratum only affects software which operates with floating-point
exceptions unmasked. Software which requires floating-point exceptions to be visible

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

16

on the next floating-point or MMX technology instruction, and which uses floating-
point calculations on data which is then used for MMX technology instructions, may
see a delay in the reporting of a floating-point instruction exception in some cases. Note
that mixing floating-point and MMX technology instructions in this way is not
recommended.
WORKAROUND : Inserting a WAIT or FWAIT instruction (or reading the floating-point
status register) between the floating-point instruction and the MOVQ or MOVD
instruction will give the expected results. This is already the recommended practice for
software.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

14. Near CALL to ESP Creates Unexpected EIP Address

PROBLEM : As documented, the CALL instruction saves procedure linking information in
the procedure stack and jumps to the called procedure specified with the destination
(target) operand. The target operand specifies the address of the first instruction in the
called procedure. This operand can be an immediate value, a general purpose register,
or a memory location. When accessing an absolute address indirectly using the stack
pointer (ESP) as a base register, the base value used is the value in the ESP register
before the instruction executes. However, when accessing an absolute address directly
using ESP as the base register, the base value used is the value of ESP after the return
value is pushed on the stack, not the value in the ESP register before the instruction
executed.
IMPLICATION : Due to this erratum, the processor may transfer control to an unintended
address. Results are unpredictable, depending on the particular application, and can
range from no effect to the unexpected termination of the application due to an
exception. Intel has observed this erratum only in a focused testing environment. Intel
has not observed any commercially available operating system, application, or compiler
that makes use of or generates this instruction.
WORKAROUND : If the other seven general purpose registers are unavailable for use, and it
is necessary to do a CALL via the ESP register, first push ESP onto the stack, then
perform an indirect call using ESP (e.g., CALL [ESP]). The saved version of ESP
should be popped off the stack after the call returns.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

17

15. Built-in Self-test Always Gives Nonzero Result

PROBLEM : The Built-in Self-test (BIST) of the Intel Celeron processor does not give a
zero result to indicate a passing test. Regardless of pass or fail status, bit 6 of the BIST
result in the EAX register after running BIST is set.
IMPLICATION : Software which relies on a zero result to indicate a passing BIST will
indicate BIST failure.
WORKAROUND : Mask bit 6 of the BIST result register when analyzing BIST results.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

16. THERMTRIP# May Not be Asserted as Specified

PROBLEM : THERMTRIP# is a signal on the Intel Celeron processor which is asserted
when the core reaches a critical temperature during operation as detailed in the
processor specification. The Intel Celeron processor may not assert THERMTRIP#
until a much higher temperature than the one specified is reached.
IMPLICATION : The THERMTRIP# feature is not functional on the Intel Celeron processor.
Note that this erratum can only occur when the processor is running with a TPLATE

temperature over the maximum specification of 75 °C.
WORKAROUND : Avoid operation of the Intel Celeron processor outside of the thermal
specifications defined by the processor specifications.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

17. Cache State Corruption in the Presence of Page A/D-bit Setting and Snoop
Traffic

PROBLEM : If an operating system uses the Page Access and/or Dirty bit feature
implemented in the Intel architecture and there is a significant amount of snoop traffic
on the bus, while the processor is setting the Access and/or Dirty bit the processor may
inappropriately change a single L1 cache line to the modified state.
IMPLICATION : The occurrence of this erratum may result in cache incoherency, which may
cause parity errors, data corruption (with no parity error), unexpected application or
operating system termination, or system hangs.
WORKAROUND : It is possible for BIOS code to contain a workaround for this erratum.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

18

18. Snoop Cycle Generates Spurious Machine Check Exception

PROBLEM : The processor may incorrectly generate a Machine Check Exception (MCE)
when it processes a snoop access that does not hit the L1 data cache. Due to an internal
logic error, this type of snoop cycle may still check data parity on undriven data lines.
The processor generates a spurious machine check exception as a result of this
unnecessary parity check.
IMPLICATION : A spurious machine check exception may result in an unexpected system
halt if Machine Check Exception reporting is enabled in the operating system.
WORKAROUND : It is possible for BIOS code to contain a workaround for this erratum.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

19. MOVD/MOVQ Instruction Writes to Memory Prematurely

PROBLEM : When an instruction encounters a fault, the faulting instruction should not
modify any CPU or system state. However, when the MMX technology store
instructions MOVD and MOVQ encounter any of the following events, it is possible for
the store to be committed to memory even though it should be canceled:

1. If CR0.EM = 1 (Emulation bit), then the store could happen prior to the triggered
invalid opcode exception.

2. If the floating-point Top-of-Stack (FP TOS) is not zero, then the store could happen
prior to executing the processor assist routine that sets the FP TOS to zero.

3. If there is an unmasked floating-point exception pending, then the store could
happen prior to the triggered unmasked floating-point exception.

4. If CR0.TS = 1 (Task Switched bit), then the store could happen prior to the
triggered Device Not Available (DNA) exception.

If the MOVD/MOVQ instruction is restarted after handling any of the above events,
then the store will be performed again, overwriting with the expected data. The
instruction will not be restarted after event 1. The instruction will definitely be restarted
after events 2 and 4. The instruction may or may not be restarted after event 3,
depending on the specific exception handler.
IMPLICATION : This erratum causes unpredictable behavior in an application if
MOVD/MOVQ instructions are used to manipulate semaphores for multiprocessor
synchronization, or if these MMX instructions are used to write to uncacheable memory
or memory mapped I/O that has side effects, e.g., graphics devices. This erratum is
completely transparent to all applications that do not have these characteristics. When
each of the above conditions are analyzed:

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

19

1. Setting the CR0.EM bit forces all floating-point/MMX™ instructions to be handled
by software emulation. The MOVD/MOVQ instruction, which is an MMX
instruction, would be considered an invalid instruction. Operating systems typically
terminates the application after getting the expected invalid opcode fault.

2. The FP TOS not equal to 0 case only occurs when the MOVD/MOVQ store is the
first MMX instruction in an MMX technology routine and the previous floating-
point routine did not clean up the floating-point states properly when it exited.
Floating-point routines commonly leave TOS to 0 prior to exiting. For a store to be
executed as the first MMX instruction in an MMX technology routine following a
floating-point routine, the software would be implementing instruction level
intermixing of floating-point and MMX instructions. Intel does not recommend this
practice.

3. The unmasked floating-point exception case only occurs if the store is the first
MMX technology instruction in an MMX technology routine and the previous
floating-point routine exited with an unmasked floating-point exception pending.
Again, for a store to be executed as the first MMX instruction in an MMX
technology routine following a floating-point routine, the software would be
implementing instruction level intermixing of floating-point and MMX instructions.
Intel does not recommend this practice.

4. Device Not Available (DNA) exceptions occur naturally when a task switch is made
between two tasks that use either floating-point instructions and/or MMX
instructions. For this erratum, in the event of the DNA exception, data from the prior
task may be temporarily stored to the present task’s program state.

WORKAROUND : Do not use MMX instructions to manipulate semaphores for
multiprocessor synchronization. Do not use MOVD/MOVQ instructions to write
directly to I/O devices if doing so triggers user visible side effects. An OS can prevent
old data from being stored to a new task’s program state by cleansing the FPU
explicitly after every task switch. Follow Intel’s recommended programming paradigms
in the Intel Architecture Developer’s Optimization Manual for writing MMX
technology programs. Specifically, do not mix floating-point and MMX instructions.
When transitioning to new a MMX technology routine, begin with an instruction that
does not depend on the prior state of either the MMX technology registers or the
floating-point registers, such as a load or PXOR mm0, mm0. Be sure that the FP TOS
is clear before using MMX instructions.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

20

20. Memory Type Undefined for Nonmemory Operations

PROBLEM : The Memory Type field for nonmemory transactions such as I/O and Special
Cycles are undefined. Although the Memory Type attribute for nonmemory operations
logically should (and usually does) manifest itself as UC, this feature is not designed
into the implementation and is therefore inconsistent.
IMPLICATION : Bus agents may decode a non-UC memory type for nonmemory bus
transactions.
WORKAROUND : Bus agents must consider transaction type to determine the validity of the
Memory Type field for a transaction.
STATUS: For the steppings affected, see the Summary Table of Changes at the beginning
of this section.

21. Bus Protocol Conflict With Optimized Chipsets

PROBLEM : A “dead” turnaround cycle with no agent driving the address, address parity,
request command, or request parity signals must occur between the processor driving
these signals and the chipset driving them after asserting BPRI#. The Intel Celeron
processor does not follow this protocol. Thus, if a system uses a chipset or third party
agent which optimizes its arbitration latency (reducing it to 2 clocks when it observes
an active (low) ADS# signal and an inactive (high) LOCK# signal on the same clock
that BPRI# is asserted (driven low)), the Intel Celeron processor may cause bus
contention during an unlocked bus exchange.
IMPLICATION : This violation of the reduced arbitration latency bus exchange protocol may
cause a system-level setup timing violation on the address, address parity, request
command, or request parity signals on the system bus. This may result in a system hang
or assertion of the AERR# signal, causing spurious corrective action or shutdown of the
system, as the system hardware and software dictate. The possibility of failure due to
the contention caused by this erratum may be increased due to the processor’s internal
active pull-up of these signals on the clock after the signals are no longer being driven
by the processor.
WORKAROUND : If the chipset and third party agents used with the Intel Celeron processor
do not optimize their arbitration latency as described above, no action is required. For
the 66 MHz Intel Celeron processor, no action is required.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

21

22. FP Data Operand Pointer May Not be Zero After Power On or Reset

PROBLEM : The FP Data Operand Pointer, as specified, should be reset to zero upon
power on or Reset by the processor. Due to this erratum, the FP Data Operand Pointer
may be nonzero after power on or Reset.
IMPLICATION : Software which uses the FP Data Operand Pointer and count on its value
being zero after power on or Reset without first executing an FINIT/FNINIT instruction
will use an incorrect value, resulting on incorrect behavior of the software.
WORKAROUND : Software should follow the recommendation in Section 8.2 of the Intel
Architecture Software Developer’s Manual, Volume 3: System Programming Guide
(Order Number 243192). This recommendation states that if the FPU will be used,
software-initialization code should execute an FINIT/FNINIT instruction following a
hardware reset. This will correctly clear the FP Data Operand Pointer to zero.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

23. MOVD Following Zeroing Instruction Can Cause Incorrect Result

PROBLEM : An incorrect result may be calculated after these circumstances:
1. A register has been zeroed with either a SUB reg, reg instruction or an XOR reg,

reg instruction,
2. A value is moved with sign extension into the same register’s lower 16 bits,
3. This register is then copied to an MMX™ register using the MOVD instruction

prior to any other operations on the sign-extended value.
Specifically, the sign may be incorrectly extended into bits 16-31 of the MMX register.
Only the MMX register is affected by this erratum.
The erratum only occurs when the 3 following steps occur in the order shown. The
erratum may occur with up to 40 intervening instructions that do not modify the sign-
extended value between steps 2 and 3.
1. XOR EAX, EAX

or SUB EAX, EAX
2. MOVSX AX, BL

or MOVSX AX, byte ptr <memory address>
or MOVSX AX, BX
or MOVSX AX, word ptr <memory address>
or CBW

3. MOVD MM0, EAX
Note that this erratum may occur with “EAX” replaced with any 32-bit general purpose
register, and “AX” with the corresponding 16-bit version of that replacement. “BL” or

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

22

“BX” can be replaced with any 8-bit or 16-bit general purpose register. The CBW
instruction is specific to the EAX register only.
In the example, EAX is forced to contain 0 by the XOR or SUB instructions. Since the
four types of the MOVSX instructions and the CBW instruction modify only bits 15:8
of EAX by sign extending the lower 8 bits of EAX, bits 31:16 of EAX should always
contain 0. This implies that when MOVD copies EAX to MM0, bits 31:16 of MM0
should also be 0. Under certain scenarios, bits 31:16 of MM0 are not 0, but are replicas
of bit 15 (the 16th bit) of AX. This is noticeable when the value in AX after the
MOVSX or CBW instruction is negative, i.e., bit 15 of AX is a 1.
When AX is positive (bit 15 of AX is a 0), MOVD will always produce the correct
answer. If AX is negative (bit 15 of AX is a 1), MOVD may produce the right answer
or the wrong answer depending on the point in time when the MOVD instruction is
executed in relation to the MOVSX or CBW instruction.
IMPLICATION : The effect of incorrect execution will vary from unnoticeable, due to the
code sequence discarding the incorrect bits, to an application failure. If the MMX
application in which MOVD is used to manipulate pixels, it is possible for one or more
pixels to exhibit the wrong color or position momentarily. It is also possible for a
computational application that uses the MOVD instruction in the manner described
above to produce incorrect data. Note that this data may cause an unexpected page fault
or general protection fault.
WORKAROUND : There are two possible workarounds for this erratum:
1. Rather than using the MOVSX-MOVD or CBW-MOVD pairing to handle one

variable at a time, use the sign extension capabilities (PSRAW, etc.) within
MMX™ for operating on multiple variables. This would result in higher
performance as well.

2. Insert another operation that modifies or copies the sign-extended value between the
MOVSX/CBW instruction and the MOVD instruction as in the example below:

 XOR EAX, EAX (or SUB EAX, EAX)
 MOVSX AX, BL (or other MOVSX or CBW instruction)
 *MOV EAX, EAX
 MOVD MM0, EAX

* MOV EAX, EAX is used here as it is fairly unobtrusive. Again, EAX can be any 32-bit register.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

23

1AP. APIC Access to Cacheable Memory Causes SHUTDOWN

PROBLEM : APIC operations which access memory with any type other than uncacheable
(UC) are illegal. If an APIC operation to a memory type other than UC occurs and
Machine Check Exceptions (MCEs) are disabled, the processor will enter SHUTDOWN
after such an access. If MCEs are enabled, an MCE will occur. However, in this
circumstance, a second MCE will be signaled. The second MCE signal will cause the
Intel Celeron processor to enter SHUTDOWN.
IMPLICATION : Recovery from a PIC access to cacheable memory will not be successful.
Software that accesses only UC type memory during APIC operations will not
encounter this erratum.
WORKAROUND : Ensure that the memory space to which PIC accesses can be made is
marked as type UC (uncacheable) in the memory type range registers (MTRRs) to avoid
this erratum.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

2AP. Write to Mask LVT (Programmed as EXTINT) Will Not Deassert
Outstanding Interrupt

PROBLEM : If the APIC subsystem is configured in Virtual Wire Mode implemented
through the local APIC (i.e., the 8259 INTR signal is connected to LINT0 and LVT1’s
interrupt delivery mode field is programmed as EXTINT), a write to LVT1 intended to
mask interrupts will not deassert the internal interrupt source if the external LINT0
signal is already asserted. The interrupt will be erroneously posted to the Intel Celeron
processor despite the attempt to mask it via the LVT.
IMPLICATION : Because of the masking attempt, interrupts may be generated when the
system software expects no interrupts to be posted.
WORKAROUND : Software can issue a write to the 8259A interrupt mask register to
deassert the LINT0 interrupt level, followed by a read to the controller to ensure that the
LINT0 signal has been deasserted. Once this is ensured, software may then issue the
write to mask LVT entry 1.
STATUS: For the steppings affected see the Summary Table of Changes at the beginning
of this section.

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

24

DOCUMENTATION CHANGES
The Documentation Changes listed in this section apply to the Intel Celeron™
Processor at 266 MHz datasheet and the Intel Architecture Software Developer’s
Manual, Volumes 1, 2, and 3. All Documentation Changes will be incorporated into a
future version of the appropriate Intel Celeron processor documentation.

Note: The Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3,
applies to all P6 family processors, and therefore some of the documentation changes in
this section may not pertain to the Intel Celeron processor specifically.

1. Invalid Arithmetic Operations and Masked Responses to Them Relative to
FIST/FISTP Instruction

The Intel Architecture Software Developer’s Manual, Volume 1, Table 7-20 show
“Invalid Arithmetic Operations and the Masked Responses to Them.” The table entry
corresponding to the FIST/FISTP condition is missing, and is shown below:

Condition Masked Response

FIST/FISTP instruction when input
operand <> MAXINT for destination
operand size.

Return MAXNEG to destination
operand.

When FIST/FISTP instruction is executed with input operand <> and the destination
operand size is MAXINT, the floating-point zero-divide exception will return
MAXNEG to the destination operand as its masked response.

2. FIDIV/FIDIVR m16int Description

The Intel Architecture Software Developer’s Manual, Volume 1, pages 3-118 and
3-122, show in the Description column for the FIDIV m16int instruction as “Divide
ST(0) by m64int by ST(0) and store the result in ST(0)” and FIDIVR m16int instruction
as “Divide m64int by ST(0) and store the result in ST(0)” In both of these cases, m64int
should be replaced with m16int.

3. PUSH Does Not Pad With Zeros

The Intel Architecture Software Developer’s Manual, Volume 1, page 4-3, contain a
section regarding stack alignment. The last sentence in the first paragraph of this
section, which reads “If a 16-bit value is pushed onto a 32-bit wide stack, the value is

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

25

automatically padded with zeros out to 32-bits.” should be removed. The PUSH
instruction does not pad with zeros.

4. DR7, Bit 10 is Reserved

The Intel Architecture Software Developer’s Manual, Volume 3: System Programming
Guide, shows Figure 14-1, “Debug Registers.” Bit 10 of DR7 should be “Reserved”
instead of “1.”

5. Cache and TLB Description Correction

In the Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set
Reference, Table 3-7, the correct description for descriptor value 02H should be as
follows:

Descriptor Value Cache or TLB Description

02H Instruction TLB: 4M-Byte Pages, fully associative, 2 entries

Also, the third bullet after the table should be as follows:
I. Bytes 1, 2, and 3 of register EAX indicate that the processor contains the following:

–01H–A 32-entry instruction TLB (4-way set associative) for mapping 4-Kbytes
pages.
–02H–A 2-entry instruction TLB (fully associative) for mapping 4-Mbyte pages.
–03H–A 64-entry data TLB (4-way set associative) for mapping 4-Kbyte pages.

For the Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide, Table 9-1, the following corrections should be made:

Cache or Buffer Characteristics

Instruction TLB
(Large Pages)

- P6 family processors: 2 entries, fully associative.

- Pentium® processor: Uses same TLB as used for 4-Kbyte pages.

- Intel486™ processor: None (large pages not supported).

6. SMRAM State Save Map Contains Documentation Errors

In the Intel Architecture Software Developer’s Manual, Volume 3, System
Programming Guide, Chapter 11, “System Management Mode,” Table 11-1 incorrectly
documents the SMBASE+Offset for IDT Base and GDT Base for Intel Celeron
processors.

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

26

The storage locations for these parameters are model specific (i.e., they may differ
between the Pentium processor, the Pentium Pro processor, Pentium II processor, Intel
Celeron processor, and other P6 family proliferations). These entries in the tables above
will be changed to Reserved. Hardware and software may not rely on the contents of
these Reserved regions.

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

27

SPECIFICATION CLARIFICATIONS
The Specification Clarifications listed in this section apply to the Intel Celeron™
Processor at 266 MHz datasheet and the Intel Architecture Software Developer’s
Manual, Volumes 1, 2, and 3. All Specification Clarifications will be incorporated into
a future version of the appropriate Intel Celeron processor documentation.

Note: The Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3,
applies to all P6 family processors, and therefore some of the specification clarifications
in this section may not pertain to the Intel Celeron processor specifically.

1. Writes to WC Memory

Section 9.3. of the Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide identifies that “Writes” to a region of WC memory “may be
delayed and combined in the write buffer to reduce memory accesses.” This sentence
should state that “Writes” to a region of WC memory “may be delayed and combined in
the write buffer to reduce memory accesses. The writes may be delayed until the next
occurrence of a buffer or processor serialization event, e.g., CPUID execution, a read or
write to uncached memory, interrupt occurrence, LOCKed instruction execution, etc., if
the WC buffer is partially filled.”

2. Multiple Processors Protocol and Restrictions

Section 7.6.1. of the Intel Architecture Software Developer’s Manual, Volume 3:
System Programming Guide, contain inconsistencies which will be clarified as follows:

7.6.1. Protocol Requirements and Restrictions

The MP protocol imposes the following requirements and restrictions on the system:

• An APIC clock (APICLK) must be provided on all systems based on the Pentium®

Pro processor.

• All interrupt mechanisms must be disabled for the duration of the MP protocol
algorithm including the window of time between the assertion of INIT# or receipt of
an INIT IPI by the application processors and the receipt of a STARTUP IPI by the
application processors. That is, requests generated by interrupting devices must not
be seen by the local APIC unit (on board the processor) until the completion of the
algorithm. Failure to disable the interrupt mechanisms may result in processor
shutdown.

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

28

• The MP protocol should be initiated only after a hardware reset. After completion of
the protocol algorithm, a flag is set in the APIC base MSR of the BSP
(APIC_BASE.BSP) to indicate that it is the BSP. This flag is cleared for all other
processors. If a processor or the system is subject to an INIT sequence (either
through the INIT# pin or an INIT IPI), then the MP protocol is not re-executed.
Instead, each processor examines its BSP flag to determine whether the processor
should boot or wait for a STARTUP IPI.

3. Critical Sequence of Events During a Page Fault Exception

Section 3.6.4., “Page-Directory and Page-Table Entries,” in the Intel Architecture
Software Developer’s Manual, Volume 3: System Programming Guide, will be clarified
as follows:

If the processor generates a page-fault exception, the operating system must carry out
the following operations in this order:

1. Copy the page from disk storage into physical memory if needed.

2. Load the page address into the page-table or page-directory entry and set its present
flag. Other bits, such as the dirty and accessed bits, may also be set at this time.

3. Invalidate the current page table entry in the TLB (see Section 3.7., “Translation
Lookaside Buffers (TLBs)” for a discussion of TLBs and how to invalidate them).

4. Return from the page fault handler to restart the interrupted program or task.

4. Performance-Monitoring Counter Issues

The following table documents the characterized differences between the behavior of
the Intel Celeron processor’s performance-monitoring counters and that documented in
Appendix A of the Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide.
The following table replaces Table A-1 of the Intel Architecture Software Developer’s
Manual, Volume 3: System Programming Guide. The only change to this new table are
enhanced descriptions of the events counted.

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

29

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

Data
Cache
Unit
(DCU)

43H DATA_
MEM_
REFS

00H All loads from any
memory type. All
stores to any
memory type. Each
part of a split is
counted separately.
The internal logic
counts not only
external memory
loads and stores, but
also internal retries.

Note: 80 bit floating
point accesses are
double counted,
since they are
decomposed into a
16 bit exponent load
and a 64 bit mantissa
load.
Memory accesses
are only counted
when they are
actually performed.
E.g., a load that gets
squashed because a
previous cache miss
is outstanding to the
same address, and
which finally gets
performed, is only
counted once.
Does not include I/O
accesses, or other
nonmemory
accesses.

45H DCU_LIN
ES_IN

00H Total lines allocated
in the DCU.

46H DCU_M_
LINES_IN

00H Number of M state
lines allocated in the
DCU.

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

30

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

47H DCU_M_
LINES_
OUT

00H Number of M state
lines evicted from
the DCU. This
includes evictions
via snoop HITM,
intervention or
replacement.

48H DCU_
MISS_
OUT-
STAND-
ING

00H Weighted number of
cycles while a DCU
miss is outstanding,
incremented by the
number of
outstanding cache
misses at any
particular time.
Cacheable read
requests only are
considered.
Uncacheable
requests are
excluded. Read-for-
ownerships are
counted as well as
line fills, invalidates,
and stores.

An access that
also misses the L2
is short-changed
by 2 cycles. (i.e.,
if count is N
cycles, should be
N+2 cycles.)
Subsequent loads
to the same cache
line will not result
in any additional
counts. Count
value not precise,
but still useful.

Instr-
uction
Fetch
Unit
(IFU)

80H IFU_
IFETCH

00H Number of
instruction fetches,
both cacheable and
noncacheable.
Including UC
fetches.

81H IFU_
IFETCH_
MISS

00H Number of
instruction fetch
misses. All
instruction fetches
that do not hit the
IFU, i.e., that
produce memory
requests. Includes
UC accesses.

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

31

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

85H ITLB_
MISS

00H Number of ITLB
misses.

86H IFU_
MEM_
STALL

00H Number of cycles
instruction fetch is
stalled, for any
reason. Includes IFU
cache misses, ITLB
misses, ITLB faults
and other minor
stalls.

87H ILD_
STALL

00H Number of cycles
that the instruction
length decoder is
stalled.

L2
Cache1

28H L2_
IFETCH

MESI
0FH

Number of L2
instruction fetches.
This event indicates
that a normal
instruction fetch was
received by the L2.
The count includes
only L2 cacheable
instruction fetches; it
does not include UC
instruction fetches. It
does not include
ITLB miss accesses.

29H L2_LD MESI
0FH

Number of L2 data
loads. This event
indicates that a
normal, unlocked,
load memory access
was received by the
L2. It includes only
L2 cacheable
memory accesses; it
does not include I/O
accesses, other
nonmemory
accesses, or memory
accesses such as

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

32

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

UC/WT memory
accesses. It does
include L2 cacheable
TLB miss memory
accesses.

2AH L2_ST MESI
0FH

Number of L2 data
stores. This event
indicates that a
normal, unlocked,
store memory access
was received by the
L2. Specifically, it
indicates that the
DCU sent a read-for-
ownership request to
the L2. It also
includes Invalid to
Modified requests
sent by the DCU to
the L2. It includes
only L2 cacheable
store memory
accesses; it does not
include I/O accesses,
other nonmemory
accesses, or memory
accesses like
UC/WT stores. It
includes TLB miss
memory accesses.

24H L2_LINES
_IN

00H Number of lines
allocated in the L2.

26H L2_LINES
_OUT

00H Number of lines
removed from the L2
for any reason.

25H L2_M_
LINES_
INM

00H Number of modified
lines allocated in the
L2.

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

33

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

27H L2_M_
LINES_
OUTM

00H Number of modified
lines removed from
the L2 for any
reason.

2EH L2_
RQSTS

MESI
0FH

Total number of L2
requests.

21H L2_ADS 00H Number of L2
address strobes.

22H L2_DBUS_
BUSY

00H Number of cycles
during which the L2
cache data bus was
busy.

23H L2_DBUS_
BUSY_ RD

00H Number of cycles
during which the
data bus was busy
transferring read data
from L2 to the
processor.

Exter-
nal Bus
Logic
(EBL)2

62H BUS_
DRDY_
CLOCKS

00H
(Self)
20H
(Any)

Number of clocks
during which
DRDY# is asserted.
Essentially,
utilization of the
external system data
bus.

Unit Mask = 00H
counts bus clocks
when the
processor is
driving DRDY#.
Unit Mask = 20H
counts in
processor clocks
when any agent is
driving DRDY#.

63H BUS_
LOCK_
CLOCKS

00H
(Self)
20H
(Any)

Number of clocks
during which
LOCK# is asserted
on the external
system bus.

Always counts in
processor clocks.

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

34

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

60H BUS_REQ
_OUT-
STAND-
ING

00H
(Self)

Number of bus
requests outstanding.
This counter is
incremented by the
number of cacheable
read bus requests
outstanding in any
given cycle.

Counts only DCU
full-line cacheable
reads, not RFOs,
writes, instruction
fetches, or
anything else.
Counts “waiting
for bus to
complete” (last
data chunk
received).

65H BUS_
TRAN_
BRD

00H
(Self)
20H
(Any)

Number of burst read
transactions.

66H BUS_
TRAN_
RFO

00H
(Self)
20H
(Any)

Number of
completed read for
ownership
transactions.

67H BUS_
TRANS_W
B

00H
(Self)
20H
(Any)

Number of
completed write
back transactions.

68H BUS_
TRAN_
IFETCH

00H
(Self)
20H
(Any)

Number of
completed
instruction fetch
transactions.

69H BUS_
TRAN_
INVAL

00H
(Self)
20H
(Any)

Number of
completed invalidate
transactions.

6AH BUS_
TRAN_
PWR

00H
(Self)
20H
(Any)

Number of
completed partial
write transactions.

6BH BUS_
TRANS_P

00H
(Self)
20H
(Any)

Number of
completed partial
transactions.

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

35

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

6CH BUS_
TRANS_
IO

00H
(Self)
20H
(Any)

Number of
completed I/O
transactions.

6DH BUS_
TRAN_
DEF

00H
(Self)
20H
(Any)

Number of
completed deferred
transactions.

6EH BUS_
TRAN_
BURST

00H
(Self)
20H
(Any)

Number of
completed burst
transactions.

70H BUS_
TRAN_
ANY

00H
(Self)
20H
(Any)

Number of all
completed bus
transactions. Address
bus utilization can be
calculated knowing
the minimum
address bus
occupancy. Includes
special cycles etc.

6FH BUS_
TRAN_
MEM

00H
(Self)
20H
(Any)

Number of
completed memory
transactions.

64H BUS_
DATA_
RCV

00H
(Self)

Number of bus clock
cycles during which
this processor is
receiving data.

61H BUS_BNR
_DRV

00H
(Self)

Number of bus clock
cycles during which
this processor is
driving the BNR#
pin.

7AH BUS_HIT_

DRV

00H
(Self)

Number of bus clock
cycles during which
this processor is
driving the HIT# pin.

Includes cycles
due to snoop
stalls.

The event counts
correctly, but the
BPMi pins

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

36

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

function as
follows based on
the setting of the
PC bits (bit 19 in
the PerfEvtSel0
and PerfEvtSel1
registers). If the
core clock to bus
clock ratio is 2:1
or 3:1, and a PC
bit is set, the
BPMi pins will be
asserted for a
single clock when
the counters
overflow. If the
PC bit is clear, the
processor toggles
the BPMi pins
when the counter
overflows. If the
clock ratio is not
2:1 or 3:1, the
BPMi pins will
not function for
these
performance-
monitoring
counter events.

7BH BUS_
HITM_
DRV

00H
(Self)

Number of bus clock
cycles during which
this processor is
driving the HITM#
pin.

Includes cycles
due to snoop
stalls.

The event counts
correctly, but the
BPMi pins
function as
follows based on
the setting of the
PC bits (bit 19 in
the PerfEvtSel0
and PerfEvtSel1
registers). If the
core clock to bus

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

37

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

clock ratio is 2:1
or 3:1, and a PC
bit is set, the
BPMi pins will be
asserted for a
single clock when
the counters
overflow. If the
PC bit is clear, the
processor toggles
the BPMi pins
when the counter
overflows. If the
clock ratio is not
2:1 or 3:1, the
BPMi pins will
not function for
these
performance-
monitoring
counter events.

7EH BUS_

SNOOP_

STALL

00H
(Self)

Number of clock
cycles during which
the bus is snoop
stalled.

Float-
ing
Point
Unit

C1H FLOPS 00H Number of
computational
floating-point
operations retired.
Excludes floating
point computational
operations that cause
traps or assists.
Includes floating
point computational
operations executed
by the assist handler.
Includes internal
sub-operations of
complex floating
point instructions
like transcendentals.
Excludes floating

Counter 0 only

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

38

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

point loads and
stores.

10H FP_COMP
OPS
EXE

00H Number of
computational
floating-point
operations executed.
The number of
FADD, FSUB,
FCOM, FMULs,
integer MULs and
IMULs, FDIVs,
FPREMs, FSQRTS,
integer DIVs and
IDIVs. Note not the
number of cycles
but, the number of
operations. This
event does not
distinguish an FADD
used in the middle of
a transcendental flow
from a separate
FADD instruction.

Counter 0 only

11H FP_
ASSIST

00H Number of floating-
point exception cases
handled by
microcode.

Counter 1 only.
This event
includes counts
due to speculative
execution.

12H MUL 00H Number of
multiplies. Note:
includes integer and
well FP multiplies
and is speculative.

Counter 1 only

13H DIV 00H Number of divides.
Note: includes
integer and FP
multiplies and is
speculative.

Counter 1 only

14H CYCLES_
DIV_
BUSY

00H Number of cycles
that the divider is
busy, and cannot

Counter 0 only

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

39

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

accept new divides.
Note: includes
integer and FP
divides, FPREM,
FPSQRT, etc. and is
speculative.

Mem-
ory
Order-
ing

03H LD_
BLOCKS

00H Number of store
buffer blocks.
Includes counts
caused by preceding
stores whose
addresses are
unknown, preceding
stores whose
addresses are known
to conflict, but
whose data is
unknown and
preceding stores that
conflicts with the
load, but which
incompletely overlap
the load.

04H SB_DRAI
NS

00H Number of store
buffer drain cycles.
Incremented during
every cycle the store
buffer is draining.
Draining is caused
by serializing
operations like
CPUID,
synchronizing
operations like
XCHG, Interrupt
acknowledgment as
well as other
conditions such as
cache flushing.

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

40

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

05H MIS-
ALIGN_
MEM_
REF

00H Number of
misaligned data
memory references.
Incremented by 1
every cycle during
which either the load
or store pipeline
dispatches a
misaligned uop.
Counting is
performed if its the
first half or second
half, or if it is
blocked, squashed or
misses.
Note in this context
misaligned means
crossing a 64 bit
boundary.

It should be noted
that
MISALIGN_ME
M_REF is only an
approximation, to
the true number of
misaligned
memory
references. The
value returned is
roughly
proportional to the
number of
misaligned
memory accesses,
i.e., the size of the
problem.

Instr-
uction
Decod-
ing and
Retire
ment

C0H INST_

RETIRED

OOH Number of
instructions retired.

A hardware
interrupt received
during/after the last
iteration of the REP
STOS flow causes
the counter to
undercount by 1
instruction.

C2H UOPS_

RETIRED

00H Number of UOPs
retired.

D0H INST_

DECOD-
ER

00H Number of
instructions decoded.

Inter-
rupts

C8H HW_INT_
RX

00H Number of hardware
interrupts received.

C6H CYCLES_
INT_
MASKED

00H Number of processor
cycles for which
interrupts are
disabled.

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

41

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

C7H CYCLES_
INT_
PENDING
AND

MASKED

00H Number of processor
cycles for which
interrupts are
disabled and
interrupts are
pending.

Bran-
ches

C4H BR_INST_
RETIRED

00H Number of branch
instructions retired.

C5H BR_MISS_
PRED_

RETIRED

00H Number of
mispredicted
branches retired.

C9H BR_
TAKEN_
RETIRED

00H Number of taken
branches retired.

CAH BR_MISS_
PRED_
TAKEN_
RET

00H Number of taken
mispredictions
branches retired.

E0H BR_INST_

DECOD-
ED

00H Number of branch
instructions decoded.

E2H BTB_
MISSES

00H Number of branches
that for which the
BTB did not produce
a prediction

E4H BR_
BOGUS

00H Number of bogus
branches.

E6H BA-
CLEARS

00H Number of time
BACLEAR is
asserted. This is the
number of times that
a static branch
prediction was made,
where the branch
decoder decided to
make a branch
prediction because
the BTB did not.

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

42

Unit
Event

Number

Mnemon-
ic Event
Name

Unit
Mask Description Comments

Stalls A2H RE-
SOURCE_
STALLS

00H Incremented by one
during every cycle
that there is a
resource related stall.
Includes register
renaming buffer
entries, memory
buffer entries. Does
not include stalls due
to bus queue full, too
many cache misses,
etc. In addition to
resource related
stalls, this event
counts some other
events.
Includes stalls
arising during branch
misprediction
recovery, e.g., if
retirement of the
mispredicted branch
is delayed and stalls
arising while store
buffer is draining
from synchronizing
operations.

D2H PARTIAL_
RAT_

STALLS

00H Number of cycles or
events for partial
stalls. Note Includes
flag partial stalls.

Seg-
ment
Reg-
ister
Loads

06H SEG-
MENT_
REG_
LOADS

00H Number of segment
register loads

Clocks 79H CPU_CLK
_UN-
HALTED

00H Number of cycles
during which the
processor is not
halted.

 INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

24374801.doc

INTEL CONFIDENTIAL — PRELIMINARY

43

NOTES:

1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field in the PerfEvtSel0 and
PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in conjunction with L2 events to indicate the cache state or
cache states involved. The Pentium® II processor identifies cache states using the “MESI” protocol and consequently each bit in the
Unit Mask field represents one of the four states: UMSK[3] = M (8H) state, UMSK[2] = E (4H) state, UMSK[1] = S (2H) state, and
UMSK[0] = I (1H) state. UMSK[3:0] = MESI (FH) should be used to collect data for all states; UMSK = 0H, for the applicable
events, will result in nothing being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the Unit Mask (UMSK) field in the
PerfEvtSel0 and PerfEvtSel1 registers. Bit 5 of the UMSK field is used in conjunction with the EBL events to indicate whether the
processor should count transactions that are self generated (UMSK[5] = 0) or transactions that result from any processor on the bus
(UMSK[5] = 1).

5. POP[ESP] with 16-bit Stack Size

In the Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set
Reference, the section regarding “POP–Pop a Value from the Stack,” the following
note:
“If the ESP register is used as a base register for addressing a destination operand in
memory, the POP instruction computes the effective address of the operand after it
increments the ESP register.”

is incomplete, and should read as follows:

“If the ESP register is used as a base register for addressing a destination operand in
memory, the POP instruction computes the effective address of the operand after it
increments the ESP register. For the case of a 16-bit stack where ESP wraps to 0h as a
result of the POP instruction, the resulting location of the memory write is processor
family specific.”

In Section 17.23.1. of the Intel Architecture Software Developer’s Manual, Volume 3:
System Programming Guide, add a new section:

A POP-to-memory instruction, which uses the stack pointer (ESP) as a base
register.
For a POP-to-memory instruction that meets the following conditions:
1. The stack segment size is 16-bit.
2. Any 32-bit addressing form with the SIB byte specifying ESP as the base register.
3. The initial stack pointer is FFFCh(32-bit operand) or FFFEh (16-bit operand) and

will wrap around to 0h as a result of the POP operation.
The result of the memory write is processor family specific. For example, in Pentium II,
Pentium Pro, and Intel Celeron processors, the result of the memory write is to SS:0h
plus any scaled index and displacement. In Pentium and i486 processors, the result of
the memory write may be either a stack fault (real mode or protected mode with stack

INTEL CELERON™ PROCESSOR SPECIFICATION UPDATE

INTEL CONFIDENTIAL — PRELIMINARY

44

segment size of 64Kbyte), or write to SS:10000h plus any scaled index and
displacement (protected mode and stack segment size exceeds 64Kbyte).

	REVISION HISTORY
	PREFACE
	Specification Update for Intel Celeron™ Processor
	GENERAL INFORMATION
	Summary Table of Changes

	ERRATA
	DOCUMENTATION CHANGES
	SPECIFICATION CLARIFICATIONS

